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ABSTRACT: 

In this paper, an order level inventory model for increasing demand and variable deterioration. Demand rate has 

been considered as linear function of time and deterioration rate of power pattern form. Cost minimization 

technique has been used. 
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1 INTRODUCTION: 

Ghare & Schrader (1963), Aggrawal (1978) and Dave & Patel (1981) discussed the  inventory models with 

constant rate of deterioration. Covert & Philip (1973), Philip (1974),  Chowdhury, Roy and Chaudhuri 

(1983), Dave (1986) and Bahari-Kashani (1989) developed the inventory models with time dependent 

deterioration and instantaneous replenishment. Mishra (1975), Mandal & Phaujdar (1989) and Dave & 

Chaudhuri (1986) developed the inventory models with finite rate of production and time dependent 

deterioration.  

Vandana Dixit & Shah (2006) developed the inventory model under the assumption of time dependent 

deterioration with production rate proportional to demand which is decreasing function of time. But their 

mathematical analysis is not correct. In this paper, the mathematical incorrectness of Dixit & Shah (2006) has 

been corrected with increasing demand rate in place of decreasing demand rate.  

 

2 ASSUMPTIONS AND NOTATIONS:   

The present inventory model has been developed under the following assumption and notations.  

1. The demand rate d(t) =a+bt, a and b are positive constants, is an increasing function of time.  

2. The replenishment rate is r(t)= d(t), where 1  is a constant.  

3. The deterioration rate is  t  = 0,1t < 1  , 0t  , 1 . 

4. The lead time is zero and shortages are not allowed  

5. The deteriorated items are neither replaced nor repaired during the cycle time.  

6. C is unit cost, 1C  is the unit holding cost per time , A is the ordering cost which is fixed, T is the cycle 

time and TC is the  total cost per unit time.  

 

3 MATHEMATICAL MODELS:   

Let  tq  be the inventory level at any time t, Tt 0 . The stock level is zero initially at the beginning of 

production time i.e.   00 q . It continues up to the time 1tt   and stock with stock level S. Finally, the stock 

level reduces to zero at t=T due to demand and deterioration. This completes one cycle. This model has been 

represented in figure 1: 
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Figure 1 

The governing differential equations of inventory system in the interval  T,0 are given by. 

     tdtrqt
dt

dq
 ,  10 tt                           …(1)  

and      tdqt
dt

dq
 ,   Ttt 1                       …(2)  

The objective is to obtain the optimal values of S and TC subject to the decision variables 1t  and T. By the 

substitution of values of  td ,  tr  and  t  the equation (1) and (2) become  

  ,11 btaqt
dt

dq
     10 tt    …(3)                             

and    btaqt
dt

dq
 1 ,   Ttt 1    …(4) 

The solution of equation (3) (by neglecting the higher powers of ) is given by 
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Using the initial condition in the above equation, we get 1c =0 and consequently the stock level is given by 
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Similarly the solution of equation (4) is given by.  
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The condition   ,1 Stq   we get.  
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Using the condition    oTq   in (6) we get  
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Now the average holding cost is given by  
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The average deterioration cost per unit time is given by  
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      =    
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The average cost of the inventory system is given by  

TC=HC+DC+A.        …(10) 
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Now for the optimal values of TC, we have to differentiate TC w.r.t. 1t  and T partially and put them equal to 

zero. Thus we have 
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The values of 1t  and T obtained from (12) and (13) will be optimal provided they satisfy the inequalities 
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These values of 1t  and T will minimize the total average cost. Equations (12) and (13) can be solved with the 

help of software like mathematical or mat lab.  

 

4 NUMERICAL EXAMPLES: 

For the illustration of the procedure the following numerical problem is considered: 

Let 0001.0 ; 2 ; 1C =Rs. 10 per unit per unit time; C=Rs. 50 per unit; A=Rs.1000 per order; a=100; 

b=50. 

The solution for optimal values of 1t  and T is given by 

1t and 
T which gives the minimum total cost TC . 

Putting the above values in equations (12) and (13), we get 
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The value of S is given by  
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Using the value of S from (16) into the equations (14) and (15) and solving them with the help of mathematical 

software, we may obtain the values of 

1t and T . Consequently, we may obtain the optimal value of minimum 

total cost.      

 

5 CONCLUSIONS: 

In this paper, an order level inventory model with increasing demand and variable deterioration has presented. 

The demand rate has been taken as linearly increasing with time and the deterioration rate has been considered 

of the power pattern form. The expression for total cost has been obtained and cost minimization technique has 

been used to obtain the optimal values of the parameters.  
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